Línea del Tiempo - Descubrimiento de Partículas
16:12 |
Etiquetas:
antipartículas,
bosón de higgs,
lepton,
mesón,
neutron,
partículas subatómicas,
quark
Hadrones Exóticos
8:30 |
Etiquetas:
dibaryon,
exotic baryon,
exotic hadron,
exotic meson,
glueball,
hadron,
hybrid meson,
meson,
partículas exóticas,
partículas subatómicas,
pentaquark,
tetraquark
Los
hadrones exóticos son partículas subatómicas hechas de quarks y algunas de
gluones, pero que no entran dentro del esquema normal de hadrones. Los hadrones
exóticos no tienen el mismo contenido de quarks que los hadrones ordinarios:
los bariones exóticos tienen más que los tres quarks de los bariones comunes, y
los mesones exóticos no tienen un quark y un antiquark como los mesones
ordinarios.
Bariones
Exóticos y su estructura interna
-Pentaquark
Está
compuesto de cuatro quarks y un anti-quark.
-Dibarión
Está
compuesto de dos quarks Up, dos quarks Down, y dos quarks Strange.
Mesones
Exóticos y su estructura interna
-GlueBall
Está
compuesto únicamente de gluones, no contiene quarks. Los GlueBalls son
difíciles de detectar en aceleradores de partículas ya que suelen combinarse
con mesones ordinarios.
-Tetraquark
Está
compuesto de cuatro quarks.
-Mesón
Híbrido
Está
compuesto de uno o más pares de quark-antiquark, y uno o más gluones.
Hadrones
0:51 |
Etiquetas:
delta,
eta,
hiperon,
kaon,
lambda,
meson,
neutron,
omega,
partículas subatómicas,
phi,
pion,
proton,
rho,
sigma,
upsilon,
xi
Los hadrones son partículas subatómicas compuestas o
agrupadas que interactúan mediante la fuerza nuclear fuerte (gluones).
Existen 2 tipos de hadrones:
- Bariones: Fermiones (partículas de materia) compuestos.
- Mesones: Bosones (partículas de fuerza) compuestos.
Bariones y su estructura interna
-Protón
El protón está compuesto de 2 quarks Up y un quark Down.
-Neutrón
El neutrón está compuesto de 2 quarks Down y un quark Up.
-Lambda
Lambda (Λ0) está compuesto de uds (Up, Down, y Strange). Existen varios tipos de Lambdas (Λ+
c, Λ0
b).
c, Λ0
b).
-Sigma
Sigma (Σ+) está compuesto de uus (2 quarks Up, y un quark Strange). Existen varios tipos de Sigmas (Σ0, Σ−, Σ++
c,...).
c,...).
-Xi
Xi (Ξ0) está compuesto de uss (2 quarks Strange, y un quark Up). Existen varios tipos de Xi (Ξ−, Ξ+
c, Ξ0
c,...).
c, Ξ0
c,...).
-Omega
Omega (Ω0
c) está compuesto de ssc (2 quarks Strange, y un quark Charm). Existen varios tipos de Omegas (Ω−
b, Ω+
cc, Ω0
cb,...).
c) está compuesto de ssc (2 quarks Strange, y un quark Charm). Existen varios tipos de Omegas (Ω−
b, Ω+
cc, Ω0
cb,...).
-Delta
HIPERÓN - Se refiere a bariones que contienen uno o más Strange quarks. Están compuestos de tres quarks livianos y al menos un Strange quark, también se llama Strange Baryons (Bariones Extraños).
Existen 4 tipos de hiperones: Sigma (Σ+, Σ0 y Σ−), Lambda (Λ0), Xi (Ξ0 y Ξ−), y Omega (Ω−).
Mesones y su estructura interna
Los Mesones son partículas subatómicas inestables compuestas de un quark y un antiquark.
-Pion
El Pion (π+) está compuesto de ud (1 quark Up, y un Anti-Down). Existen varios tipos de Pion (π0 y π−).
-Eta Meson
Eta Meson (η) está compuesto de 3 quarks (Up, Down, y Strange), y sus respectivas anti-partículas (Anti-Up, Anti-Down, y Anti-Strange).
-Kaon
El Kaon (K+) está compuesto de us (1 quark Up, y un Anti-Strange). Existen varios tipos de Kaon (K0, K0
S, K0
L,...).
S, K0
L,...).
-D meson
El D meson (D+) está compuesto de cd (1 quark Charm, y un Anti-Down). Existen varios tipos de D meson (D0, D+
s).
s).
-B meson
El B meson (B+) está compuesto de ub (1 quark Up, y un Anti-Bottom). Existen varios tipos de B meson (B0, B0
s, B+
c).
s, B+
c).
Mesones Vectoriales
-Rho
-Mesón Omega
El Mesón Omega (ω) está compuesto de ud (quarks Up y Down) y sus respectivas antipartículas (Anti-Up, y Anti-Down).
-Phi
-J/Psi
-Upsilon
Spaceship Earth
16:00 |
Etiquetas:
astrophysics,
cosmic perspective,
earth,
expansion,
galaxy,
mastering astronomy,
milky way,
rotation,
solar system,
universe
How is
Earth moving in our Solar system?
Earth rotates
on its axis once each day and orbits the Sun once each year. Earth
orbits at an average distance from the Sun of 1 AU and with an axis
tilt of 23 to a line perpendicular to the ecliptic plane.
As Earth
rotates, your speed around Earth’s axis depends on your location: The closer
you are to the equator, the faster you travel with rotation.
Notice that
Earth rotates from west to east, which is why the Sun appears to rise in the
east and set in the west.
Earth takes a year to complete an orbit of the Sun, but its orbital speed is still surprisingly fast. Notice that Earth both rotates and orbits
counterclockwise as
viewed from above the
North Pole.
|
How is
our solar system moving in the Milky Way Galaxy?
We move randomly relative to other stars in our
local solar neighborhood. The speeds are substantial by earthly standards, but
stars are so far away that their motion is undetectable to the naked eye. Our
Sun and other stars in our neighborhood orbit the center of the galaxy every
230 million years, because the entire galaxy is rotating.
Our Local Solar Neighborhood
The small box shows that stars within the local
solar neighborhood (like the stars of any other small region of the galaxy)
move essentially at random relative to one another. They also generally move
quite fast.
Galactic Rotation
Our solar system, located about 27,000
light-years from the galactic center, completes one orbit of the galaxy in
about 230 million years. Even if you could watch from outside our galaxy, this
motion would be unnoticeable to your naked eye. However, if you calculate the
speed of our solar system as we orbit the center of the galaxy, you will find
that it is close to 800,000 kilometers per hour (500,000 miles per hour).
Stars at different distances from the galactic
center orbit at different speeds, and we can learn how mass is distributed in
the galaxy by measuring these speeds. Such studies indicate that the stars in
the disk of the galaxy represent only the “tip of the iceberg” compared to the
mass of the entire galaxy.
Most of the mass of the galaxy seems to be
located outside the visible disk, in what we call the halo. We don’t
know the nature of this mass, but we call it dark matter because we have
not detected any light coming from it.
Studies of other galaxies suggest that they
also are made mostly of dark matter, which means this mysterious matter must
significantly outweigh the ordinary matter that makes up planets and stars. An
even more mysterious dark energy seems to make up much of the total
energy content of the universe.
How do galaxies move within the universe?
Galaxies move essentially at random within the
Local Group, but all galaxies beyond the Local Group are moving away from us.
More distant galaxies are moving faster, which tells us that we live in an
expanding universe.
Two small galaxies (known as the Large and
Small Magellanic Clouds) apparently orbit our Milky Way Galaxy.
For example, the Milky Way is moving toward the
Andromeda Galaxy at about 300,000 kilometers per hour (180,000 miles per hour).
Despite this high speed, we needn’t worry about a collision anytime soon. Even
if the Milky Way and Andromeda Galaxies are approaching each other head-on, it
will be billions of years before any collision begins.
When we look outside the Local Group, however,
we find two astonishing facts recognized in the 1920s by Edwin Hubble, for whom
the Hubble Space Telescope was named:
1) Virtually every galaxy outside the
Local Group is moving away from us.
2) The more distant the galaxy, the
faster it appears to be racing away.
Natural explanation: The entire
universe is expanding.
Are we ever sitting still?
We are never truly sitting still. We spin
around Earth’s axis and orbit the Sun. Our solar system moves among the stars
of the local solar neighborhood while orbiting the center of the Milky Way
Galaxy. Our galaxy moves among the other galaxies of the Local Group, while all
other galaxies move away from us in our expanding universe.
BOOK: The Essential Cosmic Perspective with MasteringAstronomy (Sixth Edition)
Download PowerPoint: http://es.scribd.com/doc/98066015/CH1-Our-Place-in-the-Universe
The Scale of the Universe
15:23 |
How big
is the Earth compared to our Solar system?
On a scale of 1 to 10
billion, the Sun is about the size of a grapefruit. Planets are much smaller,
with Earth the size of a ball point and Jupiter the size of a marble on this
scale. The distances between planets are huge compared to their sizes, with
Earth orbiting 15 meters from the Sun on this scale.
Seeing our solar
system to scale also helps put space exploration into perspective. The Moon,
the only other world on which humans have ever stepped, lies only about 4
centimeters (1 inches) from Earth in the Voyage model.
The trip to Mars is
some 200 times as far as the trip to the Moon, even when Mars is on the same
side of its orbit as Earth.
How far away are the stars?
On the
1-to-10-billion scale, it is possible to walk from the Sun to Pluto in
just a few minutes. On the same scale, the nearest stars besides the Sun are
thousands of kilometers away.
The nearest star
system to our own, a three-star system called Alpha Centauri, is about 4.4
light-years away.
Using a scale on
which the Milky Way galaxy is the size of a football field, the distance to the
nearest star would be only about 4 millimeters. There are so many stars in our
galaxy that it would take thousands of years just to count them.
The observable
universe contains roughly 100 billion galaxies, and the total number of stars
is comparable to the number of grains of dry sand on all the beaches on Earth.
How do our lifetimes compare to the age of the
universe?
On a cosmic calendar
that compresses the history of the universe into 1 year, human civilization is
just a few seconds old, and a human lifetime lasts only a fraction of a second.
The cosmic calendar compresses the 14 billion-year history of the universe into 1 year,
so that each month represents a little more than 1 billion years. This cosmic
calendar is adapted from a version created by
Carl Sagan.
BOOK: The Essential Cosmic Perspective with MasteringAstronomy (Sixth Edition)
Download PowerPoint: http://es.scribd.com/doc/98066015/CH1-Our-Place-in-the-Universe
|
How Far is a Light-Year?
One
light-year (ly) is defined as the distance that light can
travel in 1 year. This distance is fixed because light always
travels at the same speed—the speed
of light, which is 300,000 km/s
(186,000 mi/s).
We can
calculate the distance represented by a lightyear by recalling that
Distance =
speed x time
For example,
if you travel at a speed of 50 km/hr for 2 hours,
you will travel 100 km. To find the distance represented by 1
light-year, we simply multiply the speed of light
by 1 year:
1 light-year =
(speed of light) x (1 yr)
That is,
1 light-year is equivalent to 9.46 trillion km, which is easier
to remember as almost 10 trillion km.
BOOK: The Essential Cosmic Perspective with MasteringAstronomy (Sixth Edition)
Download PowerPoint: http://es.scribd.com/doc/98066015/CH1-Our-Place-in-the-Universe
Our Modern view of the universe
14:29 |
Etiquetas:
andromeda,
astrophysics,
cosmic perspective,
earth,
expansion,
galaxy,
mastering astronomy,
milky way,
rotation,
solar system,
universe
Star Manufacture the Elements of Earth and Life
By studying stars of different ages, we have
learned that the early universe contained only the simplest chemical elements:
hydrogen and helium (and a trace of lithium). We and Earth are made primarily
of other elements, such as carbon, nitrogen, oxygen, and iron. Where did
these other elements come from? Evidence shows that these elements were
manufactured by stars—some through the nuclear fusion that makes stars
shine, and others through nuclear reactions accompanying the explosions
that end stellar lives.
By the time our solar system formed, about 4
billion years ago, earlier generations of stars had converted about 2% of our
galaxy’s original hydrogen and helium into heavier elements. Therefore, the
cloud that gave birth to our solar system was made of about 98% hydrogen and
helium and 2% other elements. That 2% may seem a small amount, but it was more
than enough to make the small rocky planets of our solar system, including
Earth. On Earth, some of these elements became the raw ingredients of simple
life forms, which ultimately blossomed into the great diversity of life on
Earth today.
How can we know that the universe was like in
the past?
Light takes time to travel through space, so
the farther away we look in distance, the further back we look in time. When we
look billions of light-years away, we see pieces of the universe as they
were billions of years ago.
Because light takes time to travel through
space, we are led to a remarkable fact: The farther away we look in
distance, the further back we look in time. For example, the brightest
star in the night sky, Sirius, is about 8 light-years away, which means its
light takes about 8 years to reach us. When we look at Sirius, we are seeing it
not as it is today but as it was about 8 years ago.
The Andromeda Galaxy (also known as M31) lies
about 2.5 million light-years from Earth. Figure 1.3 is therefore a picture of
how this galaxy looked about 2.5 million years ago, when early humans were
first walking on Earth.
Can we see the entire universe?
No. The age of the universe limits the extent
of our observable universe. Because the universe is about 14 billion
years old, our observable universe extends to a distance of about 14 billion
light-years. If we tried to look beyond that distance, we’d be trying to look
to a time before the universe existed.
BOOK: The Essential Cosmic Perspective with MasteringAstronomy (Sixth Edition)
Download PowerPoint: http://es.scribd.com/doc/98066015/CH1-Our-Place-in-the-Universe
Suscribirse a:
Entradas (Atom)